Age-related changes in the pediatric brain: quantitative MR evidence of maturational changes during adolescence.
نویسندگان
چکیده
PURPOSE To determine whether a quantitative MR imaging method to map spin-lattice relaxation time (T1) can be used to characterize maturational changes in the normal human brain. METHODS An inversion-recovery technique was used to map T1 transversely at the level of the basal ganglia in a study population of 19 healthy children (4 to 10 years old) and 31 healthy adolescents (10 to 20 years old), and in a normative population of 20 healthy adults (20 to 30 years old). RESULTS Nonparametric analysis of variance showed that T1 decreases with age in the genu, frontal white matter, caudate, putamen, anterior thalamus, pulvinar nucleus, optic radiation, cortical gray matter (all P < .0001), and occipital white matter. There was a significant reduction in T1 between childhood (mean age, 7.1 +/- 1.4) and adolescence (mean age, 13.5 +/- 2.6) in all brain structures, but there was also a significant reduction in T1 between adolescence (mean age, 13.5 +/- 2.6) and adulthood (mean age, 26.5 +/- 3.4) in all brain structures except occipital white matter. Regression shows that T1 declines to within the range (mean +/- 2 SD) of young adult T1 values by about 2 years in the occipital white matter, by about 4 years in the genu, by 11 years in the cortical gray matter, by 11 years in the frontal white matter, and by 13 years in the thalamus. CONCLUSION Brain structures mature at strikingly different rates, yet the ratio of gray matter T1 to white matter T1 does not change significantly with age. Thus, conventional MR imaging methods based on inherent contrast are insensitive to these changes. Age-related changes tend to reach completion sooner in white matter than in gray matter tracts. Such normative data are essential for studies of specific pediatric disorders and may be useful for assessing brain maturation in cases of developmental delay.
منابع مشابه
P29: Changes in Thickness and Intelligence
Neuroimaging research indicates that human intellectual ability is associated to brain structure including the thickness of the cerebral cortex. Most studies show that general intelligence is positively associated with cortical thickness in areas of association cortex allocated throughout both brain hemispheres. Changes in cortical thickness over time have been related to intelligence, but whet...
متن کاملP33: Effect of Mother\'s Anxiety on Fetus
The prenatal period is a critical time for neurodevelopment and is thus a period of vulnerability during which a range of exposures have been found to exert long-term changes on brain development and behavior with implications for physical and psychiatric health. During fetal life, neurons proliferate, migrate and form connections, providing the structure of the developing brain. Neurons reach ...
متن کاملDeclining Sleep Duration Is Commonly Cited as the Reason That Daytime Sleepiness Emerges in Adolescents (c.f
1677 DECLINING SLEEP DURATION IS COMMONLY CITED AS THE REASON THAT DAYTIME SLEEPINESS EMERGES IN ADOLESCENTS (C.F. 1), I.E., ADOLESCENTS ARE BECOMING sleepy because they are becoming sleep deprived. It is certainly the case that sleep schedules change dramatically with age across adolescence. Compared to younger children, adolescents delay their bedtimes but wake up as early or earlier due to s...
متن کاملQuantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کاملA developmental ERP study of verbal and non-verbal semantic processing.
To clarify how different the processing of verbal information is from the processing of meaningful non-verbal information, the present study characterized the developmental changes in neural responses to words and environmental sounds from pre-adolescence (7-9 years) through adolescence (12-14 years) to adulthood (18-25 years). Children and adults' behavioral and electrophysiological responses ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- AJNR. American journal of neuroradiology
دوره 18 5 شماره
صفحات -
تاریخ انتشار 1997